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Abstract
Text-dependent speaker verification uses short utterances and
verifies both speaker identity and text contents. Due to this na-
ture, traditional state-of-the-art speaker verification approaches,
such as i-vector, may not work well. Recently, there has been in-
terest of applying deep learning to speaker verification, however
in previous works, standalone deep learning systems have not
achieved state-of-the-art performance and they have to be used
in system combination or as tandem features to obtain gains. In
this paper, a novel multi-task deep learning framework is pro-
posed for text-dependent speaker verification. First, multi-task
deep learning is employed to learn both speaker identity and text
information. With the learned network, utterance level average
of the outputs of the last hidden layer, referred to as j-vector,
means joint-vector, is extracted. Discriminant function, with
classes defined as multi-task labels on both speaker and text,
is then applied to the j-vectors as the decision function for the
closed-set recognition, and Probabilistic Linear Discriminant
Analysis (PLDA), with classes defined as on the multi-task la-
bels, is applied to the j-vectors for the verification. Experiments
on the RSR2015 corpus showed that the j-vector approach leads
to good result on the evaluation data. The proposed multi-task
deep learning system achieved 0.54% EER, 0.14% EER for the
closed-set condition.
Index Terms: deep neural network, multi-task learning,
speaker verification, discriminant analysis, probabilistic linear
discriminant analysis, deep learning

1. Introduction
Recently there has been wide interests in text-dependent
speaker verification for applications such as automated pass-
word reset, audio command systems, speech fingerprint, and
user identification. The task of speaker verification is to iden-
tify the person who is speaking according to some character-
istics of their voices. When the process includes the option
of declaring that the test utterance does not belong to any of
the known (registered) speakers, then it is referred to as open-
set speaker recognition. Also according to whether the text of
test speech is the same as that of enrollment speech, two kinds
of speaker verification systems are involved: text-dependent
and text-independent. The main advantage of text-dependent
speaker verification systems is that it restricts the content of
speech text, so the knowledge of lexicon can be learned in mod-
els, which leads to higher accuracy in real application. Besides
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the speech duration for registration is crucial in realistic sce-
nario, which has a great impact on user experience. Accord-
ingly the text-dependent systems, which only need short utter-
ances, are more of practical interests. However, short duration
also makes it a challenging problem. Traditional state-of-the-
art speaker verification approaches, such as GMM-UBM or i-
vector, may not work well in this case[1, 2, 3]. Therefore, new
algorithms are needed for text-dependent speaker verification.

Deep learning recently attracts more and more interests in
machine learning community. It has also achieved great success
in speech processing, such as speech recognition [4], synthesis
[5, 6] and enhancement [7, 8]. There are also some works pro-
posed which was focusing on how to use it for speaker verifica-
tion. Previous works of neural networks using for speaker veri-
fication can be traced back to the last century, including combin-
ing the property of decision trees and feed-forward neural net-
works [9, 10, 11, 12], auto-associative neural network (AANN)
model [13, 14] and non-linear discriminant analysis (NLDA)
[15], and so on. These works mostly employed shallow archi-
tecture of neural network. In recent years, people started using
deep neural networks (DNN) for speaker verification applica-
tions. Our previous work proposed to use tandem deep features,
which are extracted from deep neural networks, for building
GMM-UBM text-dependent speaker verification systems[16].
d-vectors[17], which are extracted from a deep neural network,
could get good performance, and get additive improvement af-
ter combined with i-vectors[18]. Other works such as Nicolas
Scheffer’s work [19] attempts to use phone-discriminant DNN
to extract features to solve content mismatch issue. Yun Lei’s
work [20] use ASR-DNN system to produce frame posteriors,
which improves the performance of the i-vector system. How-
ever in all of these works, deep learning still has to be used in
system combination or as tandem features to get better and more
satisfactory results than the traditional methods.

In this work multi-task learning is used which could learn
the knowledge from both the speakers and text phrases simulta-
neously in just one framework, to improve the capacity of deep
neural networks. A new discriminative feature, defined as j-
vector, is extracted from these multi-task DNNs. Joint proba-
bilistic linear discriminant analysis (PLDA), with classes de-
fined as multi-task labels on both speaker and text, is then ap-
plied to the j-vectors as the decision function. Experiments
show that compared to the previous standalone systems, the pro-
posed multi-task deep learning framework can achieve better
results on the RSR2015 corpus[1].

The remainder of this paper is organized as follows. Sec-
tion 2 reviews two recent works on text-dependent speaker ver-
ification which utilized the deep neural networks: tandem deep
features and d-vectors. Section 3 describes the novel multi-task
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learning method in details. Section 4 gives the experimental
results, comparison and detailed analysis. The whole work is
summarized in Section 5.

2. Deep Learning for Text-Dependent
Speaker Verification

In this section two recent works on text-dependent speaker ver-
ification using deep neural networks are reviewed: tandem deep
features and d-vectors.

2.1. Tandem deep features

Tandem deep features, which is proposed in our previous work
[16], utilized the deep neural network as a feature extractor for
speaker verification. In this approach raw spectral features are
spanned in a context window (e.g. 11 frames, 5 frames on each
side) and fed into a refined deep neural network to generate new
features. Once the network is trained, the outputs from the hid-
den layers are utilized as high-level features, optionally com-
bined with the original spectral features, to build GMM-UBM
speaker verification systems. Three different deep features are
proposed in that work, including RBM, speaker-discriminant or
phone-discriminant neural network based features. All of them
get significant improvements individually when compare to the
spectral feature based systems. Moreover after feature combi-
nation, better performance can be obtained.

2.2. d-vectors

Motivated by the powerful acoustic modelling capability and
great success of deep neural networks in speech recognition[4],
some researchers proposed to use DNN for speaker identifica-
tion directly. Different from the above described method which
uses a DNN to extract deep features [21, 16], here people ex-
tract the speaker identity representations directly from a neural
network, which is similar as the i-vector idea. In Google’s pre-
vious work, a DNN is trained to map frame-level features in a
given context to the corresponding speaker identity target. Dur-
ing enrollment, the speaker model is computed as the average
of outputs derived from the last DNN hidden layer, which are
defined as a deep vector or ”d-vector”[17]. In the evaluation
phase, decisions are made according to the (cosine) distance be-
tween the target d-vector and the test d-vector, which is similar
as the normal i-vector speaker verification systems.

3. Multi-Task Deep Learning for
Text-Dependent Speaker Verification

A new multi-task deep learning model is introduced in this sec-
tion, including training, enrollment and test process.

3.1. Multi-Task Learning of Deep Neural Network

The intuition behind this multi-task training process is that di-
rectly recognizing speaker seems to be hard but in reality dif-
ferent speakers have their own style on each syllable or word.
Thus the optimization towards text targets, for instance, phone-
discriminant or phrase-discriminant, gives some hints to recog-
nize speakers as well. When DNN is used, with the huge num-
ber of parameters in neural network, the DNN model can be
learned together to discriminate both texts and speakers. This is
the same idea as multi-task learning.

As shown in Fig 1, for simplicity the sum of the two original
loss function C1(y1,y1

′
), C2(y2,y2

′
) is used as the total loss

Figure 1: Multi-task Deep Learning for Text Dependent
Speaker Verification

function:

C([y1,y2], [y1

′
,y2

′
]) = C1(y1,y1

′
) + C2(y2,y2

′
) (1)

where C1, C2 are two cross-entropy criteria for speakers and
texts. y1, y2 indicate the true labels for speakers and texts
individually, while y1

′
, y2

′
are the outputs of the two targets

respectively. According to the linearity of the gradient, the gra-
dient of each parameter can be calculated respectively, and new
parameters on common layers can be updated by the gradient
from the sum of two loss functions. The learning rate is re-
duced when the classify accuracy of the two tasks does not get
improvement either. Multi-task learning avoids over-fitting for
DNN training, and enhances the functionality of DNN nodes.

Once the multi-task neural network training process is
done, both of the output layers are removed, and the rest of
the neural network (common hidden layers) is used to extract
the speaker-text joint representation (just using the outputs of
the last hidden layer). The average of these outputs in the same
audio is defined as j-vectors (joint vector) for that audio in this
paper. Then the new proposed j-vectors could be utilized simi-
larly as the d-vectors[17].

3.2. Register and Verification

j-vectors, as more discriminative and compact representation,
can use several different back-end classifications, such as co-
sine similarity, linear discriminant analysis (LDA) [22, 23], and
probabilistic linear discriminant analysis (PLDA) [24, 25]. Pre-
vious work on d-vector [17] only used cosine similarity for veri-
fication, however other classifiers are investigated here in detail.
The following experiments show that joint discriminant func-
tion and PLDA give much better results than cosine similarity
metric which was utilized in d-vector approach.

3.2.1. Joint Gaussian Discriminant Function

Linear discriminant analysis (LDA) [22, 23] provides good gen-
eralization capability even with limited number of training sam-
ples. One of the advantages of this model is that LDA attempts
to define new special axes that minimize the intra-class variance
caused by channel effects, and to maximize the variance be-
tween classes. Due to these reasons it was used on many tasks
relate to speaker recognition [23, 26]. It assumes that each class
density can be modelled as a multivariate gaussian:

N (x|µk,Σk) =
1

(2π)
p
2 |Σk|

1
2

e−
1
2
(x−µk)⊤Σk

−1(x−µk) (2)
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where Σk and µk is the covariance and mean for class k, p is
the dimension of the vector. LDA model assumes Σk = Σ, ∀k.

Our experiments show that the outputs of the multi-task
learning network has strong discriminant property. The trans-
formation matrix w is estimated by the development data. The
estimation of transformation matrix w in LDA does not leads to
improvement. So without the consideration of w, according to
the linear discriminant function analysis, the discriminant func-
tion for class k could be wrote as

dfk(x) = −1

2
× (x− µk)

⊤Σ−1(x− µk) (3)

For the closed-set case, the equation can be expanded and the
first term x⊤Σx gets the same value of all classes. The rest
terms could write as the linear expression (GDF):

df
′
k(x) = (Σ−1µk)x+ (−1

2
µk

⊤Σ−1µk) (4)

And the probability could be estimated by Bayes theorem. Here
an important characteristics is to define the class as the multi-
task class considering both speaker and text phrase information,
similar to multi-task learning of deep neural networks.

3.2.2. Probabilistic Linear Discriminant Analysis

LDA uses gaussian mixture model, which can be regarded as a
latent variable model where the observed node x represents the
example and the latent variable µk is the center of a mixture
component representing class k. The class-conditional distribu-
tion is P (x|k) = N (x|µk,ϕ) where ϕ is shared by all classes.
PLDA[24, 25] propose to make the latent variable prior contin-
uous. Particularly, to enable efficient inference and closed-form
training, a Gaussian prior is imposed: P (µk) = N (µk|m,ϕb)

It is worth noted that, LDA or PLDA only with single
speaker labels always obtain degraded performance in our ex-
periments, and hence they are not discussed further.

4. Experiments
In this section experiments and comparison details are given for
the baselines and proposed new model.

4.1. Experimental Setup and Baseline System

To evaluate and compare different systems, RSR2015
database[1] which was released by I2R, is used to evaluate the
performance. The corpus contains audios recording from 300
people, which includes 143 female and 157 male speakers that
are between 17 to 42 years old. The whole set is divided into
background (bkg), development (dev) and evaluation (eval) sub-
sets. All audios are recorded using three portable devices, into
nine sessions. Each session contains thirty short phrases. The
average duration of these audio is 3.2 seconds.

When testing, a speaker is enrolled with 3 utterances of the
same phrase. The corresponding test utterances are also of the
same phrase, however all utterances in a trial come from differ-
ent sessions and are taken from the eval set. The task concerns
on both the phrase content and speaker identification. Three
different errors are taken into consideration: non-target speaker,
content mismatch, and both.

The baseline system is constructed using the gender-
independent GMM-UBM approach. 39-dimensional PLP fea-
tures with short-term mean and variance normalization is used
as the spectral features in our experiments. An energy-based
Voice Activity Detection (VAD) is utilized to detect the speech

segments, and a gender-independent UBM of 512-components
is trained using both bkg and dev data. In test data set there
are 19052 tests for true speaker and 1548956 tests for impos-
ture. Slightly different from our previous work in [16], which
was also tested on the RSR2015 text-dependent speaker verifi-
cation task, the score normalization post-processing, ZNORM
[27] is applied. The EER and minDCF of the baseline system
are shown in the first line of Table 1. It can be seen that the EER
is relatively low compared to the text-independent tasks, which
is also relative hard to improve.

Table 1: Performance of previous deep learning approaches

Feature Classifier EER(%) minDCF
PLP GMM-UBM 0.86 0.048

Tandem 0.69 0.037
d-vector Cosine Sim. 21.05 0.818

To do better comparison with previous work using deep
learning, we also construct the systems using Tandem deep fea-
tures which was proposed in our previous work [16] 1, and the
d-vectors approach which was proposed in Google’s work [17].

Speaker based DNN classifiers are needed to be built in all
these previous work [16, 17]. The deep models are all built
with 4 hidden layers with 1024 nodes per layer, and a context
window of 31 frames (15 frames on each side) 39-dim PLP is
used as the neural network inputs. The bkg and dev data are
used in the network training, and 194 classes (194 speakers in
bkg and dev set) are used in the speaker DNN construction.
The RBM pre-training is used for model initialization and SGD
based back-propagation is applied in DNN training. The learn-
ing rate annealing and early stopping strategies are used in the
BP processing and the DNN is fine-tuned with cross-entropy
objective function , along with a L2-norm weight-decay term of
coefficient 10−6.

4.1.1. Tandem deep features

Speaker-discriminant DNN is used in this work which show the
best performance among individual deep features in our previ-
ous works [16]. For each speech frame, PCA is applied on the
outputs of hidden layers and reduce the dimension to 39 dims.
This deep features can be connected with the original PLP fea-
ture to form the new concatenated Tandem deep features. Af-
ter the tandem deep feature extraction, the normal GMM-UBM
framework is implemented. The ZNORM approach is utilized
as the normal baseline described above 2.

The performance of the Tandem deep features is illustrated
as the second line of Table 1.

4.1.2. d-vectors

This speaker-discriminant DNN is used to extract the d-vector
as Google’s previous work in [17]. The accumulated outputs
of the last hidden layer are taken as a new speaker representa-
tion. The outputs of the last hidden layer using standard feed-
forward propagation in the trained DNN, are accumulated with
L2-normalization to form d-vector. The final d-vector repre-
sentation of the speaker s is derived by averaging all d-vectors
corresponding from the utterances of the same speaker s. In test

1Based on conclusion in our previous work [16] which shows
speaker-discriminant feature gets the best position, we just built the sys-
tem using speaker-discriminant tandem deep features.

2Less hidden layers and less gaussian mixtures are used here com-
pared to our work in [16]
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period d-vector is extracted from the test utterance, and the ver-
ification decision is made according to the cosine similarity as
the work in [17].

The performance of the d-vectors is illustrated as the last
line of Table 1. In this RSR2015 task, very bad performance is
observed by using the d-vector with cosine similarity directly.

4.2. Evaluation of j-vectors

For our newly proposed multi-task learning of deep neural net-
work, DNN are built with 4 hidden layers and 1024 nodes in
each layer. Most of the training configurations are the same as
the previous descriptions in baseline. After the multi-task DNN
training, the j-vectors are extracted from the outputs of the last
hidden layer as described in Section 3.

The PLDA model is then trained using the j-vectors. The
class defined in the PLDA is the multi-task label on both the
speaker and text. For each test audio the j-vectors are extracted
using the same steps and then the log likelihood from PLDA
algorithm is used to distinguish among different models. The
with-in class covariance smoothing parameter 3 is set to 0.75
and then the PLDA model is estimated with 20 iterations. For
easy comparison, the normal cosine similarity based decision
function is also used. Besides the proposed multi-task learned
deep neural network, other neural networks are also investigated
here, including deep Restricted Boltzmann machine (denoted as
r-vector), and speaker-discriminant deep neural network (just
the d-vector system). Similarly the discriminant function uti-
lized systems are also constructed.

The performance comparison is presented in Table 2. Here
GDF indicates gaussian discriminant function, as mentioned in
section 3.2.1. Obviously j-vectors are superior than the r-vector
or d-vector extracted from other neural networks, no matter
which classifier is used in the system construction. A signif-
icant improvement is obtained when using the GDF or PLDA
instead of the cosine similarity in all types of vectors, especially
within our proposed novel j-vectors framework. The Detection
error trade-off (DET) curve is illustrated in figure 2 while only
non-target speakers are considered as impostor.

Figure 2: DET curves for RSR2015 Part I evaluation set. In all
trials, target and impostor speaker pronoun the correct text

3In order to get a good estimate of the within-class covariance, the
production of this parameter and the between-class covariance is adding
to the within-class covariance

Table 2: Performance for different deep learning systems

Feature Classifier EER minDCF

r-vector
Cosine Sim. 17.43 0.684
Joint GDF 0.80 0.037

Joint PLDA 1.47 0.065

d-vector
Cosine Sim. 21.05 0.818
Joint GDF 0.71 0.033

Joint PLDA 1.62 0.070

j-vector
Cosine Sim. 9.85 0.466
Joint GDF 0.14 0.007

Joint PLDA 0.54 0.027

To further demonstrate the superiority of the j-vectors, we
also do some testing with the utterances from the unseen speak-
ers, which means that there are some impostor speakers non-
existing during the enrollment. To imitate this situation, a por-
tion ( e.g. 1

3
and 1

5
) of the enroll speakers is removed. Then

we still test whether test segments of these removed speakers
matches other enroll speakers. So the speakers in the removing
part are unseen in the enrollment, but tested on the test process
(using other models). The same evaluation process is imple-
mented as before.

The results in this condition are illustrated in Table 3. In
all the cases, the proposed j-vector obtained the best perfor-
mance. Although there is a slightly performance decline when
compared to the results in Table 2 when using gaussian dis-
criminant function (GDF), the j-vector with these model is still
much better than the baseline systems. These experiments also
demonstrate the generalization of the proposed j-vectors.

Table 3: Performance under unseen speakers conditions

Unseen Speakers Ratio 1/5 1/3
Feature Classifier EER minDCF EER minDCF

r-vector
Cosine Sim. 20.68 0.820 20.71 0.818
Joint GDF 1.33 0.062 1.63 0.076

Joint PLDA 1.42 0.066 1.65 0.073

d-vector
Cosine Sim. 15.75 0.644 15.75 0.654
Joint GDF 1.43 0.063 1.78 0.079

Joint PLDA 1.56 0.063 1.65 0.067

j-vector
Cosine Sim. 9.65 0.463 9.64 0.464
Joint GDF 0.47 0.033 0.58 0.050

Joint PLDA 0.50 0.022 0.50 0.024

5. Conclusion
This paper proposed a novel framework using deep learning
technology for text-dependent speaker verification. A multi-
task deep learning framework is described for extracting useful
knowledge from multi-level. First, multi-task deep learning is
employed to learn both speaker identity and text information.
With the learned network, utterance level average of the outputs
of the last hidden layer, referred as j-vector, are extracted. Fi-
nally gaussian discriminant function (GDF) or probabilistic lin-
ear discriminant analysis (PLDA) is applied to the j-vectors as
the decision function with the joint classes defined as multi-task
labels on both the speaker and text. Experiments show that our
proposed j-vector approach gets a large improvement compared
to the other recently proposed deep learning approaches, such
as d-vectors and tandem deep features, in the text-dependent
speaker verification. The proposed system achieves 0.54% EER
in RSR2015 corpus, 0.14% EER for closed-set evaluation.
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